Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Fang Zhang, ${ }^{\text {a }}$ Hui-Qin Lui, ${ }^{\text {a }}$ Jiang-Bo She ${ }^{\text {a }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{b}}{ }^{\text {* }}$
${ }^{\text {a }}$ Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of
Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.169$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[diaquabis($\mu-3,3^{\prime}, 5,5^{\prime}$-tetramethyl-4,4'bipyrazole $\left.-\kappa^{2} N: N^{\prime}\right)$ cobalt(II)] dinitrate]

The Co atom in the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ $\left(\mathrm{NO}_{3}\right)_{2}$, is six-coordinate in a trans- $\mathrm{N}_{4} \mathrm{O}_{2}$ octahedral geometry as a consequence of bridging by the bipyrazole ligand; the bridging leads to the formation of a polycationic layer. The layers interact with the anions through hydrogen bonds, generating a three-dimensional hydrogen-bonded network. The structure is porous as 33.4% of its unit-cell volume is empty space. The Co atom lies on a special position of site symmetry 222 , the bipyrazole ligand lies on a special position of site symmetry 2 , the water molecule on another special position of site symmetry 2 , and the nitrate anion on a special position of site symmetry m.

Comment

3,3',5,5'-Tetramethyl-4,4'-bipyrazole (Boldog, Rusanov et al., 2003; Boldog, Sieler \& Domasevitch, 2003) is an example of an N -heterocycle that has been used for the synthesis of coordination compounds for a long time (Usón et al., 1982). The crystal structures of these compounds were determined only recently. They include the cadmium (Boldog et al., 2001b; Boldog, Rusanov et al., 2003; Boldog, Sieler \& Domasevitch, 2003), cobalt (Boldog et al., 2001a; Ponomarova et al., 2002), copper (Boldog et al., 2001b; He et al., 2006; Komarchuk et al., 2004; Kruger et al., 2000), nickel (Kruger et al., 1992; Ponomarova et al., 2002), palladium (Yu et al., 2005; Zhang et al., 2004), silver (Boldog et al., 2001b; Domasevitch et al., 2005) and tungsten (Tang et al., 2004) complexes. The $1: 2$ cobalt(II) dithionate adduct is a porous compound with 29% of its unitcell volume as voids; the Co atom is covalently bonded to the dithionate units in an octahedral geometry. The zinc and cadmium analogs are isostructural (Rusanov et al., 2003).

The title compound, (I), a 1:2 cobalt(II) dinitrate adduct, crystallizes with two coordinated water molecules; the anions

Received 12 November 2006 Accepted 17 November 2006

Figure 1
A portion of the layer structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii. Symmetry codes are as given in Table 1.

Figure 2
A space-filling plot of the cationic layer structure, viewed along the c axis. The anions are not shown.
are not involved in coordination (Fig. 1). The metal atom is coordinated by the N atoms of four $3,3^{\prime}, 5,5^{\prime}$-tetramethyl-4, 4^{\prime} bipyrazole ligands, forming a square. The octahedron has the water molecules occupying trans positions. The Co atom lies on a special position of site symmetry 222 , the bipyrazole ligand lies on a special position of site symmetry 2 , the water molecule on another special position of site symmetry 2 , and the nitrate anion on a special position of site symmetry m. The bridging nature of the ligand leads to the formation of a layer (Fig. 2); the anions are located between the layers and they interact through hydrogen bonds (Table 2). The structure is porous as 33.4% of it, as calculated by PLATON (Spek, 2003), is void space.

Experimental

3,3',5,5'-Tetramethyl-4,4'-bipyrazole ($0.38 \mathrm{~g}, 2 \mathrm{mmol}$) and cobalt dinitrate hexahydrate ($0.29 \mathrm{~g}, 1 \mathrm{mmol}$) were reacted in acetone $(15 \mathrm{ml})$ to yield a deep-purple precipitate that was collected by
filtration. The compound was purified by recrystallization from acetonitrile, yielding block-shaped crystals.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ $M_{r}=599.49$
Hexagonal, $P 6 / m c c$
$a=19.922$ (3) \AA
$c=16.226$ (2) A
$V=5577.1(9) \AA^{3}$
$Z=6$
$D_{x}=1.071 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Block, purple
$0.32 \times 0.25 \times 0.22 \mathrm{~mm}$

Data collection

Bruker APEX2 area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.855, T_{\text {max }}=0.897$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.101 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.169$
$(\Delta / \sigma)_{\text {max }}=0.001$
$S=1.03$
$\Delta \rho_{\text {max }}=1.01 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.60 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-O3	2.099 (4)	Co1-N1	2.151 (2)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 3{ }^{\text {i }}$	180	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1^{\text {iii }}$	92.3 (1)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	87.7 (1)	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1{ }^{\text {ii }}$	175.4 (1)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1^{\text {ii }}$	87.7 (1)	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	96.0 (1)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	92.3 (1)	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {iii }}$	84.2 (1)

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3o \cdots O2	0.82	2.10	$2.727(4)$	134
N2-H2n \cdots O1	0.86	2.15	$2.970(4)$	160

H atoms were positioned geometrically and included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values set at 1.2 or 1.5 (water O) times $U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$. The methyl groups were rotated to fit the electron density. The final difference Fourier map had a large peak that is not close to any atom. Attempts to refine this peak as a water O atom led to very high displacement parameters. A search for solvent-accessible voids in the crystal structure using PLATON (Spek, 2003) showed a potential solvent volume of $1228 \AA^{3}$ showed only one relevant void around $(0,0,-0.02)$ with a solvent-accessible volume of $1209 \AA^{3}$, with eight electrons in the void.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2006).

metal-organic papers

We thank Shaanxi Normal University and the University of Malaya for generously supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. \& Domasevitch, K. V. (2001a). Dalton Trans. pp. 893-897.
Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. \& Domasevitch, K. V. (2001b). Polyhedron, 20, 887-897.
Boldog, I., Rusanov, E. B., Sieler, J., Blaurock, S. \& Domasevitch, K. V. (2003). Chem. Commun. pp. 740-741.
Boldog, I., Sieler, J. \& Domasevitch, K. V. (2003). Inorg. Chem. Commun. 6, 769-772.
Bruker (2004). APEX2 and SAINT (Version 7.06A). Bruker AXS Inc., Madison, Winsonsin, USA.
Domasevitch, K. V., Boldog, I., Rusanov, E. B., Hunger, J., Blaurock, S., Schröder, M. \& Sieler, J. (2005). Z. Anorg. Allg. Chem. 631, 1095-1100.
He, J., Yin, Y.-G., Wu, T., Li, D. \& Huang, X.-C. (2006). Chem. Commun. pp. 2845-2847.

Komarchuk, V. V., Ponomarova, V. V., Krautscheid, H. \& Domasevitch, K. V. (2004). Z. Anorg. Allg. Chem. 630, 1413-1418.

Kruger, P. E., Fallon, G. D., Moubaraki, B. \& Murray, K. J. (1992). Chem. Commun. pp. 1726-1927.
Kruger, P. E., Moubaraki, B., Fallon, G. D. \& Murray, K. S. (2000). J. Chem. Soc. Dalton Trans. pp. 713-718.
Ponomarova, V. V., Komarchuk, V. V., Boldog, I., Chernega, A. N., Sieler, J. \& Domasevitch, K. V. (2002). Chem. Commun. pp. 436-437.
Rusanov, E. B., Ponomarova, V. V., Komarchuk, V. V., Stoeckli-Evans, H., Fernandez-Ibañez, E., Stoeckli, F., Sieler, J. \& Domasevitch, K. V. (2003). Angew. Chem. Int. Ed. 42, 2499-2501.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tang, L.-F. \& Yang, P. (2004). Transition Met. Chem. 29, 31-34.
Usón, R., Oro, L. A., Esteban, M., Cuadro, A. M., Navarro, P. \& Elguero, J. (1982). Transition Met. Chem. 7, 234-238.

Westrip, S. P. (2006). publCIF. In preparation.
Yu, S.-Y., Huang, H.-P., Li, S.-H., Jiao, Q., i, Y.-Z., Wu, B., Sei, Y., Yamaguchi, K., Pan, Y.-J. \& Ma, H.-W. (2005). Inorg. Chem. 44, 9471-9488.

Zhang, Z.-X., Huang, H. \& Yu, S.-Y. (2004). Chin. J. Inorg. Chem. 20, 849-852.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

